All GPUs are Created Equal: Say Goodbye to Cap Bits

DX9 allows quite a bit of flexibility in implementation. ATI and NVIDIA are free to do things a little differently as they see fit. In order for software to understand how fully the hardware supports the required and optional features of DX9, the hardware has specific capability bits set that describe its features. Microsoft has eliminated this feature from DX10. Software written for DX10 will not have to worry about checking cap bits for DX10 hardware. This is due to the fact that Microsoft has been much more specific about the features required to support DX10. There will still be differences in implementation, optimizations, performance characteristics and the like, but all DX10 hardware will have the same basic feature set to draw from. On the down side, hardware vendors who want to add custom features will have to rely on OpenGL (which allows custom vendor specific extensions to the API).

This will make things much easier for game developers, as they won't have to worry about not having a specific feature around to use for an effect or rendering technique. This is also another step in the direction of eliminating the need for multiple GPU specific rendering paths. We can't say that developers won't write different code for different hardware, because we don't know anything about the differences in performance characteristics at this point. We do know from past experience (with NV30) that even something as simple as the order in which code is executed can make a significant difference in performance. We would like to think that issues like this won't present themselves, but we'll have to wait and see when more hardware and software comes along.

In order to avoid programming issues like the initial NV30 + SM2.0 problems, Microsoft will only allow HLSL (High Level Shader Language) to be used with DX10. This means no low level shader ASM optimization, but it also means that each graphics hardware maker will have full control over how shaders get compiled. There is certainly a trade off here, but this should help keep developers from inadvertently doing something that severely hampers performance on any given architecture.

If DirectX 10 sounds like a great boon to software developers, the fact that DX10 will only be supported in Windows Vista is certain to curb enthusiasm. Other than Vista-only games, all developers will still be required to support DX9 in order to keep the installed Windows XP user base as part of their target market. Some developers have actually made comments to the effect that DX10 is more of a headache than a help right now, and that won't change until they are able to abandon support of older hardware. Hopefully, the DX10 performance and feature benefits will be enough to encourage people to upgrade sooner rather than later, but if the past is any indication it could be several years before DX9 is abandoned by the majority of users and developers.

 

Unified Shaders

Unified shaders aren't actually a feature as much as a result of DX10. This is a small point that seems to get lost in the shuffle, but Microsoft doesn't require a specific implementation for DX10 compliance: they simply made a better implementation more feasible. Until now, building a GPU with unified shaders would not been have desirable, let alone practical, but Shader Model 4.0 lends itself well to this approach.

We haven't seen unified shaders yet because we didn't need or want them. Up to SM2.0, vertex shaders had a higher precision requirement than pixel shaders. While 32bit floating point was required for compliance at the vertex level, 24bit was all that was needed for full precision in pixel shaders. Partial precision hints were added to accommodate 16bit pixel shaders on NVIDIA hardware. It wouldn't have been practical at the launch of DX9 to require that all shader units be 32bit. The same goes for including pixel oriented features in the vertex shader hardware: the API didn't support it, so there was no need to include it. The R300 GPU is 218mm^2 with only 107 Million transistors, and adding any more complexity than necessary would have certainly produced a much larger chip than they would have been able to handle on the 150nm process employed at the time. These days, we are able to do much more in the same space: ATI's latest chip, the RV570, is about 230mm^2 and has 330 Million transistors.

It is much cheaper, easier, and more efficient to build hardware to fit exactly what is required of each step in the rendering pipeline. This is as true with older hardware as it is with G80. Now that DX10 calls for full 32bit in each shader and nearly the same functionality for both vertex and pixel shader units, it doesn't make sense to duplicate and segregate the hardware. Now that functionality can't be excluded from either vertex or pixel processing, hardware designers are optimizing their parts to make the most efficient use of space. It just so happens that the best way to do this and meet the requirements of DX10 is with unified shaders.

GPUs get Virtual Memory Shader Model 4.0 Enhancements
Comments Locked

111 Comments

View All Comments

  • JarredWalton - Wednesday, November 8, 2006 - link

    Page 17:

    "The dual SLI connectors are for future applications, such as daisy chaining three G80 based GPUs, much like ATI's latest CrossFire offerings."

    Using a third GPU for physics processing is another possibility, once NVIDIA begins accelerating physics on their GPUs (something that has apparently been in the works for a year or so now).
  • Missing Ghost - Wednesday, November 8, 2006 - link

    So it seems like by substracting the highest 8800gtx sli power usage result with the one for the 8800gtx single card we can conclude that the card can use as much as 205W. Does anybody knows if this number could increase when the card is used in DX10 mode?
  • JarredWalton - Wednesday, November 8, 2006 - link

    Without DX10 games and an OS, we can't test it yet. Sorry.
  • JarredWalton - Wednesday, November 8, 2006 - link

    Incidentally, I would expect the added power draw in SLI comes from more than just the GPU. The CPU, RAM, and other components are likely pushed to a higher demand with SLI/CF than when running a single card. Look at FEAR as an example, and here's the power differences for the various cards. (Oblivion doesn't have X1950 CF numbers, unfortunately.)

    X1950 XTX: 91.3W
    7900 GTX: 102.7W
    7950 GX2: 121.0W
    8800 GTX: 164.8W

    Notice how in this case, X1950 XTX appears to use less power than the other cards, but that's clearly not the case in single GPU configurations, as it requires more than everything besides the 8800 GTX. Here's the Prey results as well:

    X1950 XTX: 111.4W
    7900 GTX: 115.6W
    7950 GX2: 70.9W
    8800 GTX: 192.4W

    So there, GX2 looks like it is more power efficient, mostly because QSLI isn't doing any good. Anyway, simple subtraction relative to dual GPUs isn't enough to determine the actual power draw of any card. That's why we presented the power data without a lot of commentary - we need to do further research before we come to any final conclusions.
  • IntelUser2000 - Wednesday, November 8, 2006 - link

    It looks like putting SLI uses +170W more power. You can see how significant video card is in terms of power consumption. It blows the Pentium D away by couple of times.
  • JoKeRr - Wednesday, November 8, 2006 - link

    well, keep in mind the inefficiency of PSU, generally around 80%, so as overall power draw increases, the marginal loss of power increases a lot as well. If u actually multiply by 0.8, it gives about 136W. I suppose the power draw is from the wall.
  • DerekWilson - Thursday, November 9, 2006 - link

    max TDP of G80 is at most 185W -- NVIDIA revised this to something in the 170W range, but we know it won't get over 185 in any case.

    But games generally don't enable a card to draw max power ... 3dmark on the other hand ...
  • photoguy99 - Wednesday, November 8, 2006 - link

    Isn't 1920x1440 a resolution that almost no one uses in real life?

    Wouldn't 1920x1200 apply many more people?

    It seems almost all 23", 24", and many high end laptops have 1900x1200.

    Yes we could interpolate benchmarks, but why when no one uses 1440 vertical?

  • Frallan - Saturday, November 11, 2006 - link

    Well i have one more suggestion for a resolution. Full HD is 1920*1080 - that is sure to be found in a lot of homes in the future (after X-mas any1 ;0) ) on large LCDs - I believe it would be a good idea to throw that in there as well. Especially right now since loads of people will have to decide how to spend their money. The 37" Full HD is a given but on what system will I be gaming PS-3/X-Box/PC... Pls advice.
  • JarredWalton - Wednesday, November 8, 2006 - link

    This should be the last time we use that resolution. We're moving to LCD resolutions, but Derek still did a lot of testing (all the lower resolutions) on his trusty old CRT. LOL

Log in

Don't have an account? Sign up now